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A direct numerical simulation of a strongly coaxial swirling particle-laden flow is conducted with refer-
ence to a previous experiment. The carrier phase is simulated as a coaxial swirling flow through a short
nozzle injecting into a large container. The particle phase is carried by the primary jet, and simulated in
the Lagrangian approach. The drag force, slip-shear force and slip-rotation force experienced by particles
are calculated. A partial validation of the results is followed. The results are analyzed in Eulerian approach
focusing on the statistical behavior of particle motion. The relative importance of the drag, slip-shear and
slip-rotation forces under different Stokes numbers is indicated quantitatively. The particle velocity pro-
files, fluctuations, Reynolds stress, and turbulence intensity are demonstrated and analyzed respectively.
An important ‘‘choke” behavior for large particles within the mainstream is found and interpreted. Addi-
tionally, the patterns of particle distribution and the helical structures of particle motion under different
Stokes numbers are demonstrated qualitatively and analyzed quantitatively.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Particle-laden coaxial swirling jets are widely used in a variety
of engineering applications. For example, cyclone separators are
commonly used to separate particles from a particle-laden flow
by the strong centrifugal force exerted on the particles. Due to
the occurrence of a central recirculation zone in strongly swirling
flows, swirl can be used to stabilize non-premixed flames and
establish high mixing rates, in which a drastic mixing between
the fuel and the swirling air stream is obtained (Sommerfeld and
Qiu, 1993).

Extensive research efforts have been expended on improving
the understanding of the aerodynamics of the swirling flow and
characterizing the physical structures of swirling flows. For exam-
ple, with regards to the intriguing phenomenon of vortex break-
down in swirling flows, Benjamin (1962) characterized the vortex
breakdown as a finite transition between two dynamically conju-
gate states of axisymmetric flow, analogous to a hydraulic jump
in an open channel flow. Escudier and Zehnder (1982) suggested
a criterion for the occurrence of vortex breakdown in a tube, by a
relationship between the pipe Reynolds number and the product
of the circulation number and the ratio of the radial to tangential
velocities. Billant et al. (1998) and Liang and Maxworthy (2005)
carried out experimental investigations of swirling jets, focusing
on the different types of vortex breakdown phenomena and the
ll rights reserved.
various dynamical mechanisms related to it. Herrada and Shtern
(2003) showed the vortex breakdown control by a combination
of additional near-axis swirl and heat. They addressed a flow in a
cylindrical container driven by a rotating bottom disk, and carried
out a numerical analysis on explanation of the experimentally ob-
served effect of control of co-rotation and counter-rotation.

Moreover, on other aspects of the swirl flow, Grauer and Sideris
(1991) implemented a numerical computation of three-dimen-
sional incompressible ideal fluids with swirl, in which the Euler
equation is reduced to a two-dimensional problem using rotational
symmetry. Shtern et al. (1994) and Shtern and Mi (2004) studied
generation, hysteresis and precession of a swirling jet. They dem-
onstrated the feasibility of a supercritical pitchfork bifurcation
from an initially trivial non-swirling flow to one with a steady
swirling regime, and showed that hysteresis is a common feature
of wall-normal vortices or swirling jets no matter where the
sources of motion are located. They also studied the jet stability,
especially a half-line vortex normal to a rigid plane, with the aid
of a new approach accounting for deceleration and non-parallelism
of the base flow, and reduced the stability problem to a set of or-
dinary differential equations.

However, to study the aerodynamics of fluid phase, isothermal
swirling flows only provides a foundation stone and acts as the first
step to understanding the complex reacting swirling flows. Since
the swirling flow is most widely used in combustion systems in
which the flow structure under combusting conditions deviate
considerably from that of isothermal swirling flows. Moreover,
the motion of the dispersed phase is also of great significance to
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Fig. 1. (a) Sketch of numerical setup and its dimensions; (b) snapshot of k2-vortex
for St = 22.38 at t = 11.
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be studied. Thus, to study the particle-laden incompressible swirl-
ing flow is the secondary step to improve the knowledge of the
swirling multiphase flow. The general objectives are to study the
coupling effects of the carrier phase and the dispersed phase, espe-
cially the effects of different operating conditions and influencing
factors on the motion of the dispersed phase.

For example, Park et al. (1998) presented direct numerical sim-
ulation of a droplet-laden swirling jet, examined the effects of swirl
and two-phase momentum coupling on the jet dynamics and
structural characteristics. They indicated that the dynamics of
large-scale structures are strongly affected by the degree of swirl
imparted to the jet, and the jet dynamics and time-averaged
behavior are strongly affected by both the inter-phase momentum
coupling and swirl intensity. The momentum coupling reduces the
shear layer growth, mixing and entrainment rate for weakly and
moderately swirling jets, and it becomes even dramatic for
strongly swirling jets, etc. Wicker and Eaton (2001) carried out
an experimental study on the structure of a swirling coaxial free
jet and its effect on particle motion, with Reynolds number
Re = 13,000, swirl number S = 0.92, and five particle Stokes num-
bers ranging from 1 to 5. They focused on the toroidal structure
and its effect on particle dispersion, and found the coherent struc-
tures disperse particles more effectively than the natural jet. Shi-
rolkar and Mcquay (2001) applied a PDF propagation approach to
model turbulent dispersion in swirling flows. They used two differ-
ent turbulence models to solve the fluid phase, and the models are
evaluated with experiments of Sommerfeld and Qiu (1993). Their
results demonstrated the computational efficiency of the model,
and compared favorably with the experimental data. Apte et al.
(2003) and Oefelein et al. (2007) both carried out large eddy sim-
ulations of coaxial swirling particle-laden flows in a combustor.
Their simulations tracked particle motion under the Lagrangian
frame and treated particle as a point source term for inter-phase
momentum exchange. More interestingly, on the micro-length
scale when the fluid inertia is important, Subramanian and Koch
(2006) studied suspensions of neutrally buoyant particles subject
to simple shear flow, and showed that micro-scale inertia dramat-
ically alters the streamline topology and the heat or mass transfer
when Re is kept small. Moreover, in an analytical way, Candelier
and Angilella (2006) treated with the explicit contribution of each
term appearing in the perturbed flow equation by using matched
asymptotic expansions. They analyzed the explicit contribution of
fluid inertia and fluid unsteadiness to the force acting on a solid
sphere moving in a vertical solid-body rotation flow, under the lim-
it of small Reynolds and Taylor numbers, and showed how the con-
vective terms and the unsteady term contribute to the particle drag
and lift coefficients in a very complex and non-additive manner.

In conclusion, particle-laden swirling flow is of great signifi-
cance in both industrial application and scientific research. More
specifically, particle motion under different operating conditions
is required to be studied to show the relative importance of the
centrifugal and advective motions. However, very few researches
have been done on the characteristics of particle behavior influ-
enced by the anisotropic nature of swirling vortex. Moreover,
DNS is a promising numerical approach for improving the under-
standing of both the swirling flow structure and the particle dis-
persion behaviors. It can provide full scales of turbulence by a set
of very fine grids and high order difference schemes, though it is
usually implemented at low Reynolds numbers due to the com-
puter performance limitation. Thus, the present study used DNS
to study the particle dispersion in a strongly swirling flow, focusing
on the statistical behavior of particle motion and the influencing
factors for them. The flow conditions and parameters used in this
numerical simulation are mainly according to a previous experi-
mental study of a particle-laden confined swirling flow carried
out by Sommerfeld and Qiu (1993), but with somewhat changes
due to simulation limitation and for facilitation of the numerical
treatment.
2. Numerical description

2.1. Governing equations of fluid

In the preset study, the full three-dimensional, time-dependent,
incompressible Navier–Stokes equations of viscous Newtonian flu-
ids are solved directly on structured grids with its resolution meets
the requirement of direct numerical simulation. The continuity of
mass and conservation of momentum are formulated in the non-
dimensional form as following:

r � u ¼ 0 ð1Þ
@u
@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2uþ Fb ð2Þ

where u is fluid velocity and p is pressure. The Reynolds number
Re ¼ D2U1

v is defined based on the diameter of the annular swirling
flow D2 and the mean velocity of the primary flow U1. Fb is the par-
ticle-to-fluid feedback force in discretized control volumes, and it is
a sum of all feedback forces of particles in the control volume:
Fb ¼

PN
i¼1f b;i, where N is the instantaneous number of particles in

the control volume and fb,i is the feedback force from the ‘i’ th par-
ticle to fluid.

To solve the above equations, a total number of 400 � 128 � 128
grids, corresponding to a domain with scales of 8 � 2.56
� 2.56 mm3 (Fig. 1a), are used. The domain is a little wider than
0.01 times of the experimental setup of Sommerfeld and Qiu
(1993). The finite volume method and the fractional-step projection
technique (Chorin, 1968) are also applied. The spatial discretization
scheme is of second-order precision. An explicit low-storage, third-
order Runge–Kutta scheme (Williamson, 1980) is used for time inte-
gration. A direct fast elliptic solver is used to solve the Poisson equa-
tion. A typical result of k2-vortex (Jeong and Hussain, 1995) is
showed on Fig. 1b, where the small discrete vortices are induced
by the particle phase due to the feedback coupling effects.



236 N. Gui et al. / International Journal of Multiphase Flow 36 (2010) 234–243
For DNS simulation, the requirement of grids increases expo-
nentially with the Reynolds number (Re3/4). According to Moin
and Mahesh (1998), the largest scales is determined by the length
of the simulation domain, and smallest scales that needs to be re-
solved is the commonly quoted Kolmogorov length scale g. How-
ever, this requirement is considered too stringent. In this study,
as the mesh spacing is 0.02 mm, the resolved finest scales of turbu-
lence by the central difference scheme are about 0.08 mm which is
considered as within the range of O(g). Thus, the spatial resolution
for DNS is satisfied. Moreover, to stabilize the simulation for a
strongly swirling flow, a fine time step of Dt = 0.001 and a total
of 20,000 time steps are used.

2.2. Particle motion

The forces experienced by a isolated rigid particle suspended in a
viscous quiescent carrier phase was firstly proposed by Tchen
(1947), and it was corrected and modified into the well known
Basset–Boussinesq–Oseen (BBO) equation. Maxey and Riley (1983)
derived strictly a governing equation of motion of an isolated rigid
spherical particle in an unsteady and non-uniform flow, in order to
resolve the errors in previous versions of motion equation of particle.
However, the equation is still very complicated. In the present study,
some assumptions are considered: (1) Particles are treated as rigid
spherical particles with a uniform diameter dp and a uniform density
qp; (2) particle density is far larger than fluid density (qp/qf� 1); (3)
As it is a dilute gas–solid flow and the loading of the particle is very
small, the particle–particle collision effect is omitted. Based on the
above assumptions, the Stokes drag force is of the leading order
(qp/qf� 1, see Elghobashi and Truesdell, 1992). The Buoyancy force,
Basset force, and virtual mass force are not of the leading order and
omitted in simulation. The pressure gradient force and gravitational
force are also not taken into account, since the fluid is incompressible
and the gravity can be treated as absent in a vertical flow. However,
the slip-shear lift force (Saffman, 1965; Mei, 1992) and the slip-rota-
tion lift force (Crowe et al., 1998) are taken into account, since the
rotation of particle and the gradient of fluid velocity play important
roles in strongly swirling flows, both in the near-wall regions and in
the central circulation zones.

As stated above, the particle phase is treated as a discrete dis-
persed phase, whose motion is simulated by integration of the
Newton’s law of motion,

dXp

dt
¼ vp ð3Þ

mp
dvp

dt
¼ f d þ f LR þ f LS ð4Þ

Ip
dxp

dt
¼ T ð5Þ

where Xp, vp and xp are coordinates, velocities and angular veloci-
ties of particles respectively. mp and Ip are particle mass and mo-
ment of inertia, respectively. fd, fLR, fLS and T are the drag force,
the slip-rotation force, the slip-shear lift force, and the torques,
respectively. They are expressed as following:

f d ¼
1
2
qf

pd2
p

4
CDðu� vpÞju� vpj ð6Þ

f LR ¼
qf

2
p
4

d2
pCLRju� vpj

X� ðu� vpÞ
jXj ð7Þ

f LS ¼ 1:615d2
pðqf lf Þ

1=2 1
xf

� �0:5

ðu� vpÞ � xf

� �
f ðRep;ResÞ ð8Þ

T ¼
qf

2
dp

2

� �5

CRjXjX ð9Þ
where lf is fluid viscosity. CD is the drag coefficient: CD ¼ 24
Rep

fd,

where Rep is the particle Reynolds number Rep ¼
qf dp ju�vp j

lf
, and the

factor fd is set according to Clift et al. (1978): fd ¼ 1þ
0:15Re0:687

p þ 0:0175 Rep

1þ 4:25� 104Re�1:16
p

. The lift coefficient CLR in Eq.

(7) is a combination expression proposed by Rubinow and Keller
(1961) and Oesterle and Dinh (1998):

CLR ¼

dp jXj
ju�vp j ¼

ReR
Rep
; for Rep 6 1

0:45þ ReR
Rep
� 0:45

� �
exp �0:05684 � Re0:4

R � Re0:3
p

� �
;

for 1 < Rep < 140

8>>><
>>>:

ð10Þ

where X = xf � xp and xf ¼ 1
2r� u are the difference of the rota-

tional velocities between the fluid and the particle at locations
where the particles occupy, and the rotational velocity of the fluid,
respectively. ReR in Eq. (10) is so-called the rotational Reynolds

number of particle, and it is defined similarly as ReR ¼
qf d2

p jXj
lf

. The

function f(Rep, Res) in Eq. (8) is explained as a ratio of the extended
lift force to the Saffman lift force, and it is formulated as:

f ðRep;ResÞ¼
1�0:3314b1=2
� �

exp �Rep

10

� �
þ0:3314b1=2; Rep 6 40

0:0524ðbRepÞ1=2
; Rep>40

8<
:

ð11Þ

where Res is the shear Reynolds number, defined as Res ¼
qf d2

p jxf j
lf

,

and b is a parameter, expressed as b ¼ dp jxf j
2ju�vp j ¼

1
2

Res
Rep

. At last, the coef-

ficient CR in Eq. (9) is given by Rubinow (1961), Sawatzki (1970) and
Dennis et al. (1980):

CR ¼
64p
ReR

; for ReR 6 32
12:9
Re0:5

R
þ 128:4

ReR
; for 32 < ReR < 1000

8<
: ð12Þ

Before calculating all the above formulations, a non-dimensional-
ization process is carried out. Since, in the present study, the
momentum coupling between the solid phase and the gas phase
is done in dimensionless equations. After this process, the dimen-
sionless motion equations for the particle phase are:

dvp

dt
¼ fD

St
ðu�vpÞþ

3
4

qf

qp
CLS ðu�vpÞ�xf
� �

þ3
4

qf

qp

Rep

ReR
CLR X�ðu�vpÞ
� �

ð13Þ

dxp

dt
¼15

16
qf

qpp
CRjXjX ð14Þ

where St ¼ qd2
p=ð18lf Þ
L�=U� is the Stokes number, defined as the ratio of par-

ticle response time to the characteristic time of fluid, and L* and U*

are characteristic length scale and characteristic velocity. The char-
acteristic length scale used here is according to Sommerfeld and Qiu
(1993), and it is the distance from the primary jet inlet to the stag-
nation point at the top of the central recirculation bubble. The char-
acteristic velocity is set according to the Reynolds number
limitation. As a reduced value of Re = 669.4 is used, and based on
the domain dimension and the fluid viscosity, the characteristic
velocity is U1 = 15 m/s here.

For integration of Eqs. (13) and (14) as time advances, an expli-
cit step-forward scheme is used. At each time step after solution of
the fluid field, the calculation of the right items of Eqs. (13) and
(14) is done, and after that the updating of particle velocities and
positions is carried out. During calculation of the right items of
Eqs. (13) and (14), the feedback forces on each mesh cell are also
calculated. Then, the feedback forces on each grid node (the verti-
ces of the mesh cell) are obtained by a linear interpolation scheme.



Fig. 2. Inflow axial (a) and tangential velocity profiles (b).

Table 1
Flow conditions and properties of fluid and particles.

Mean velocity of the primary flow U1 (m/s) 15
Mean velocity of the secondary annular flow U2 (m/s) 22.5
Diameter of the primary jet D1 (mm) 0.32
Diameter of the secondary annular flow D2 (mm) 0.64
Reynolds number Re 669.4
Swirl number S 1.42
Fluid viscosity l (Pa s) 1.85 � 10�5

Ratio of densities for particle to fluid qp/qf 2500/1.29
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2.3. Simulation conditions

As direct numerical simulation of high Reynolds number flow
requires an exponentially huge number of numerical grids, it usu-
ally goes beyond the limitation of performance of computers. Thus,
to carry out direct numerical simulation of a high Reynolds number
flow following experimental conditions is out of the question. For
example, the experiment carried out by Sommerfeld and Qiu
(1993) is one of the most quoted experiments, with a Reynolds
number of 52,400 which exceeds far from the limitation of com-
puter performance. Hence, to follow the experimental conditions
exactly for validation of numerical simulations is very difficult,
although the similarity criterion is always used.

Thus, there are some different operating conditions between
this numerical simulations and the experiment. For example, be-
sides the difference in Reynolds number, we did not follow exactly
the width and the geometry of the flow domain, since we used the
Cartesian coordinates to simplify the tracking and simulating of
particle motion.

However, we still tried to keep some key conditions similar to
Sommerfeld and Qiu (1993) as a basic reference. For example,
the ratio of diameters of the annular flow to that of the primary
jet (D2/D1), the ratio of the axial velocities of the annular flow to
that of the primary jet (U2/U1), the ratio of particle density to fluid
density (qp/qf), the inflow velocity profiles, and the swirl number S,
etc. The swirl number is the ratio of the axial flux of angular
momentum to the axial flux of linear momentum:

S ¼
2
R D2=2

0 qwur2dr

D2
R D2=2

0 qu2rdr
: ð15Þ

Unlike Sommerfeld and Qiu (1993), we used the diameter of the
annular flow D2 as the length scale in the denominator of Eq. (15),
and obtained a large swirl number S = 1.42, which is corresponding
to a strongly swirling flow.

To specify the inflow condition, the profiles of axial inflow
velocity (Fig. 2a) is designed according to Sommerfeld and Qiu
(1993) and the tangential velocity (Fig. 2b) is set according to Eq.
(15). It is noticed that the tangential velocity within the range
|r| < R2 is also similar to the experiment. To use this type of inflow
velocity configuration is reasonable since it captures the dominant
characteristics of swirl velocity distribution. However, there are
still other influencing factors, such as inflow turbulence intensity,
which would significantly affect the vortex evolution. As the Rey-
nolds number is relatively low, the initial turbulence is not evident
or kept low. Moreover, we lack available experimental data which
depicts the initial turbulence in detail. Thus, the present study did
not introduce turbulence in the inflow condition, and the flows are
evolved based on intrinsic characteristics of the swirl velocity
distribution.

The other flow conditions and properties of fluid and particles,
and the parameters for particles under different operating condi-
tions are all listed in Tables 1 and 2. For different Stokes numbers,
the particles are injected through the nozzle into the large con-
tainer, and the number of particles for each injection depends on
different Stokes numbers and particle sizes. The initial velocities
of particles, including the angular velocity, are set the same as that
of fluid where the particle occupies.

3. Numerical results

3.1. Partial validation

Firstly, as the experimental conditions are partially followed, a
comparison of mean velocities of the gas phase at corresponding
axial locations between this numerical simulation and the previous
experiment (Sommerfeld and Qiu, 1993) is done to partially vali-
date this simulation. However, the r.m.s. values of gas phase are
not compared as it is greatly determined by the Reynolds number.

As Fig. 3a shows, as the inlet velocity profiles are similar and the
swirl number is the same, the downstream development of veloc-
ity profiles is to some degree still alike, although the geometry of
the flow domain and the Reynolds number are different. The peak
values of mean velocity occur at the two sides, near the main
stream of the annular flow, and a moderate flow flux occurs in



Table 2
Parameters for particles in different simulations.

Particle diameter
Dp (lm)

Number of particles injected
per time step

Stokes
number S

1.73 777 0.46
2.57 236 1.02
7.42 10 6.79
8.98 6 10.38

12.02 2 22.28

Fig. 3. (a) Comparison of mean gas velocity between this numerical study
(Re = 669.41) and the referential experiment (Re = 52,400, Sommerfeld and Qiu)
at four axial locations: x = 0D2, 0.39D2, 0.81D2 and 1.32D2, respectively. The gas
velocity is divided by the mean primary gas velocity U1 and the radial coordinates is
divided by the diameter of the annular swirling flow D2. The width of numerical
simulation is 4D2 whereas in experiment it is 3D2. It acts as only a partial validation;
(b) the energy spectrum of fluid.
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the central region of the primary jet. As the swirling flow for this
study has a wider space and a slightly wider profile near the inlet
(x = 0.05D2), the downstream developments of the flow are also
wider than that of experiment. Note that the inlet velocity profile
is set according to the velocity profile of the experiment at
x = 0.05D2 (z = 3 mm in Sommerfeld and Qiu (1993)), therefore
after evolution through the nozzle, the profile becomes wider than
the experiments at x = 0.05D2. Moreover, since the experimental
swirling flow is of high Reynolds number and it is strongly re-
stricted by the width of the container, minus velocities occur near
the vicinity of the wall, whereas it did not occur so early in this
simulation, until it reaches a further downstream location of
x = 1.32D2.

The similarities in development of velocity profiles are due to
the fundamental characteristics of swirling flows in velocity pro-
files. Note that the type of bubble vortex breakdown is indepen-
dent of the Reynolds number when the Reynolds number is
small, and it occurs if and only if the swirl number reaches a critical
value (Billant, 1998). Thus, in this way, the basic profiles of the
swirling flow are to some degree similar with each other.

Secondly, to guarantee the quality of solution, Fig. 3c describes
the energy spectrum of fluid which is obtained by fast Fourier
transformation of the correlation functions:

EijðkÞ ¼
Z Z Z

RijðrÞe�ik�rd3r

where k is the wave vector and r is the position vector.
RijðrÞ ¼ uiðxÞujðxþ rÞ is the two-point correlation function and the
over bar represents the ensemble average. As Fig. 3b shows, the Kol-
mogorov dissipation wave-number kd is about 30 and the dissipa-
tion scale is g = 1/kd � 0.033. The energy containing wave number
kin is less than 1 and consequently the energy containing scale l is
larger than 1. Moreover, as the scale of the flow domain is L = 4
which indicates l < L = 4. As a result, the number of mesh grids in
each dimension is required to be larger than l/g = 121. From this
point of view, it is found that the spatial solution of fluid turbulence
is fine enough.

3.2. Comparison of forces

In this section, we will demonstrate the relative importance of
fluid-to-particle particles with different Stokes numbers. As Fig. 4
shows, we tracked and recorded the variation of different forces,
i.e. the drag force, the slip-shear lift force and the slip-rotation lift
force, respectively from t = 0 to 4, and then calculated mean values
of the forces at each time point. From Fig. 4a, it is observed that the
slip-shear lift force is of relatively secondary importance compar-
ing to the drag force, i.e. it only reaches a maximum of 6% of the
drag force. The relative importance of the slip-shear force increases
with the Stokes number, which means the heavier the particle, the
more important the slip-shear force. However, this trend seems to
be attenuated by sufficient large particles, since from St = 6.79 to
St = 22.28 the trend is not very evident.

The relative importance of the slip-shear force to the slip-rota-
tion force is showed on Fig. 4b, from which we found that the rel-
ative importance depends largely on the Stokes number. For small
particles, the slip-rotation force is less important than the slip-
shear force, whereas for large particles the inverse becomes true.
It seems to be true that for large particles the slip-rotation force
is more important than the slip-shear force. It can even reach a
superior limit comparative to the drag force provided the particle
is large enough. Meanwhile, for small particles the slip-shear force
becomes more important than the slip-rotation force, although un-
der this condition both of them are relatively less important than
the drag force, and could be neglected in simulation. This conclu-
sion validates the simulation carried out by Sommerfeld and Qiu
(1993), where only the drag force and the lift force due to particle
rotation are considered under the condition of large Stokes
numbers.



Fig. 4. Comparison of mean forces experienced by particle for t = 0–4. (a) Slip-shear
lift force to drag force; (b) slip-rotation lift force to slip-shear lift force.
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3.3. Particle velocity profile and fluctuation

To carry out statistics of particle phase, here we calculated sta-
tistically the time-averaged flow field of particles, based on the
assumption of continuum of particle phase. The calculation is
realized under the basis of locally-averaging treatment, which
averages the physical quantities of particles within each discret-
ized mesh cell, and regards it as a mass point of a continuum. To
say more specifically, particle velocity up(x,t)|E at location x and
time t on the basis of the Eulerian viewpoint (denoted as the sub-
script ‘E’) is calculated by a sum of velocity vectors of all the parti-
cles at time t within the mesh cell enclosing x. Then the mean and
r.m.s values of particles are calculated just the same as fluid. Under
this type of Eulerian point of view, the statistics of particle phase is
then calculated easily. However, it is necessary to notice that the
averaged profiles are not necessary to be smooth. It is reasonable
since the averaging process is based on the Eulerian viewpoint.
As the particles are in fact a discrete phase and the number of par-
ticles is relatively small, the profiles are certainly not as smooth as
that of fluid.
Fig. 5a and b show the characteristics of the particle mean
velocity profiles and fluctuations for different Stokes numbers at
a typical axial location of about x = 0.8D2 from the exit of the noz-
zle. The fluctuation is evaluated by the r.m.s. value of it. For large
particles, the distribution of particles is almost concentrated near
the central primary jet, although, in fact, there are many particles
being dispersed by the expansion of vortex structure to the periph-
ery of the primary jet. It is due to that heavy particles response to
fluid more slowly and hardly than light particles before being
transported downstream by the advection of the central primary
jet. Comparatively, light particles with smaller Stokes number re-
sponse to vortex structure sooner and they have enough time to
follow the expansion motion of fluid vortex. Thus, they have a
wider velocity profile and a wider distribution of intensive fluctu-
ation than that of heavy particles.

Moreover, the absolute peak values of the mean velocity de-
crease as Stokes number increases, which means that with heavy
particles suspended, the particle axial velocity become slower
more rapidly than that suspended with light particles. It is reason-
able since heavy particles have larger inertia and response to fluid
more difficult and more slowly than light particles. This results in
two straightforward effects: (1) The existence of heavy particles
will act as blockages to the advection motion of the jet. (2) The
slow-down of the jet will conversely lead to slow-down of the par-
ticles. For validation, Fig. 5c shows particle velocity on the central
line of the primary jet. It is found that for large particles there ex-
ists a choke of the main stream. The particle velocities are not slo-
wed down as smoothly as that of light particles. Alternatively, the
particles move in a pattern of a quick slow-down, followed imme-
diately with a quick speed-up, and then a smooth slow-down trend
takes place. Moreover, the final slow-down takes place more
quickly and then more slowly than the regular slow-down process
of light particles. This kind of behavior will certainly cause an accu-
mulation of particle near the region transited from the quick slow-
down process to the quick speed-up process. It is so as showed on
the inset of Fig. 5, which displays the particle number density on
the central line. It is obvious that for large particles there exists a
sudden raise in particle concentration near the predicted region.

The behavior of choke is due to the large inertia of particles
which leads particle response to fluid vortex transition, i.e. the vor-
tex expansion and recirculation of flow within the region of vortex
breakdown, fairly sluggish. Thus, the bluntness of particle response
can cause flow choke in the jet mainstream. On the other hand, the
choke of flow in combustion industry may be beneficial to ignition
of fuel, especially for coal particles, since the accumulation of fuel
within the recirculation zone with a high temperature is an advan-
tageous condition to fuel ignition and flame stabilization. From this
point of view, for fuel mixtures with large inertia components are
beneficial to stabilization of flame.

3.4. Particle Reynolds shear stress

The particle Reynolds stress is defined similarly as fluid, e.g. u0iu
0
j,

etc. u0u0;v 0v 0;w0w0 are normal stresses and u0v 0;u0w0;v 0w0 are shear
stresses, where u0, v0 and w0 are axial (streamwise), radial (lateral)
and azimuthal (spanwise) component of turbulence fluctuation. In
this section, we will demonstrate the three components of particle
Reynolds shear stress, as the effect of the anisotropic nature of
swirling flow on the shearing characteristics of particle behavior
in Eulerian–Lagrangian direct numerical simulation has not been
reported yet.

Fig. 6 shows the three components of particle shear stress in lat-
eral direction at the same axial location of x = 0.8D2 with dimen-
sionless values. From Fig. 6a, it is showed that for particles with
small Stokes numbers, the lateral (radial) dispersion is intensive
than that with large Stokes numbers, especially in the region out



Fig. 5. Particle velocity profiles at different Stokes numbers: (a) particle mean
velocity; (b) r.m.s. values of particle velocity and (c) particle velocity on the central
line. The inset is the number density of particle on the central line. They are all non-
dimensionlized by the values at the outlet of the nozzle.

Fig. 6. Particle Reynolds shear stress in the lateral direction (z = 0) at an axial
location of x = 0.8D2. They are all non-dimensionalized by the square of the mean
velocity of the primary jet: (a) u0v 0=U2

1; (b) u0w0=U2
1; (c) v 0w0=U2

1.
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of the central main stream. Thus, though the axial component u0 is
very large for small particles within the range from �0.5D2 to
0.5D2, the combination of u0v 0 within the same range is compara-
tively lower than that within ±(0.5 � 1.5)D2. In contrast, for large
particles, the radial dispersion is less intensive due to their great
inertia and slow response. As a result, the peak values of u0v 0 ap-
pear within the central mean stream (�0.5D2 � 0.5D2). For inter-
mediate Stokes numbers (St � 1), both the above characteristics
occur.

For u0w0, similar results are observed in Fig. 6b for light particles.
However, for heavy particles, it is showed by Fig. 6b that the azi-
muthal fluctuation seems to be much less intensive than the radial
fluctuation. It indicates that for heavy particles it response to tur-
bulence in the radial direction easily than that in the azimuthal
direction. In other words, the motion behavior for heavy particles
is characterized by a ‘throw-away’ pattern from the centre stream
to the periphery following a helical trajectory with a weaker helic-
ity, whereas the light particles can easily follow a strongly helical
trajectory moving from the central main stream to its periphery.
This difference in motion pattern characteristics can be easily ex-
plained by the difference in particle inertia. Since with the same
moving velocities, particles with larger inertia have larger centrif-
ugal tendencies, and need larger inter-phase forces to drive the
particles to move in their previous directions. Under the same flow
conditions, fluid cannot offer the required momentum to drive
heavy particles in the same way as light particles.

For v 0w0, Fig. 6c shows the combination of v 0w0 and indicates
that only for particles with light (St < 1) and intermediate Stokes
numbers (St � 1) the radial and azimuthal velocities fluctuate in
synchronism and with equivalent intensities. Otherwise, v 0w0 is al-
most negligible due to their fluctuation in different regions or
inharmony of fluctuation intensity.
Fig. 7. Particle turbulence intensity in the axial location of x = 0.8D2 at different
Stokes numbers: (a) St = 0.46; (b) St = 1.02 and (c) St = 27.
3.5. Particle turbulence intensity

As above-mentioned, the particle turbulence intensity is simi-
larly defined as the r.m.s. values of particle velocity, namelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02 þ v 02 þw02
p

divided by the mean values of particle velocityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 þ �v2 þ �w2
p

. In this way, the relative intensity of particle fluctu-
ation from the Eulerian point of view is illustrated. For example,
Fig. 7 shows three typical images of particle turbulence intensity
at the same axial location of x = 0.8D2.

Fig. 7a shows that particle fluctuation for small Stokes numbers
(St = 0.46) is almost of smooth variation, just looks like a fluid mo-
tion. For each particle with large Stokes numbers, it is heavier than
that with small Stokes numbers (St � qpd2

p and mp � qpd3
p). As a re-

sult, under the condition of same mass loading, the number of par-
ticles with small Stokes number is very larger than that of large
Stokes number. Thus, the Eulerian statistical results of particle
for small Stokes number are obviously smoother than that of larger
Stokes number. Moreover, the variation of particle fluctuation for
small Stokes number is inherently different from that of large
Stokes number (Fig. 7c). It is observed from Fig. 7a that a coherent
structure of particle distribution resembling a fluid vortex struc-
ture is established. It is a funnel-shaped rotating pattern in
clock-wise direction, and it disperses particles from the centre to
the periphery in a manner of helical motion. Fig. 7b shows a similar
result for intermediate Stokes numbers. The pattern of distribution
is similar to Fig. 7a, but with a small discrepancy that the particle
turbulence intensity in the peripheral region is enhanced than
Fig. 7a.

In contrast, for particles with great Stokes number, the distribu-
tion pattern seems to be greatly changed from the strongly helical
structure to a more weak helical or even radial structure. As Fig. 7c



Fig. 8. The evolution of mean moment of particle momentum with respect to jet
axis.
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shows, the helical pattern of particle dispersion seems not to be as
evident as before. Particle dispersion is greatly disturbed and par-
ticles can easily penetrate the periphery region of the swirling flow
to the outer of the recirculation zones. A more homogeneous distri-
bution in the peripheral region occurs, or alternatively a radial
distribution is preferred. To describe it quantitatively, Fig. 8 shows
the evolution of mean moment of particle momentum to the jet
axis. The moment of particle momentum is defined as: X ¼ 1

NpPNp
n¼1r� vp, where Np is the number of particles. The moment of

particle momentum quantifies the degree of rotational motion or
helical motion of all the particles. It is observed from Fig. 8 that
the rotational motion for particles with St = 0.46 and St = 1.02 are
almost threefold and twofold intensive than that of the larger par-
ticles, respectively. That is why the great differences between pat-
tern distributions of small and larger particles occur. This also
validates the analysis of Fig. 6b in the above section, as it is mainly
due to the great inertia of large particle for which fluid turbulence
cannot drive it to move in a strong helical trajectory as easily as
light particle.

The above results are based on the particle statistics in which
the discrete phase of particles are localized and then averaged in
the Eulerian approach. This technique is useful for revealing the
behavior characteristics of dispersed phase in gas–solid flows.

4. Conclusion

The particle behaviors of different Stokes numbers in a strongly
gas–solid swirling flow are studied by direction numerical simula-
tion. The simulation makes reference to a previous experiment with
some different conditions for the sake of easy numerical implemen-
tation. In this simulation, three fluid-to-particle forces (the drag
force, the Magnus force, and the Saffman force) are considered
and directly calculated. It is found after partial validation that:

(1) Although both the slip-shear lift force and slip-rotation lift
force are of relatively secondary importance comparing to
the drag force, the relative importance of them varies under
diffident conditions. The importance of slip-shear force
increases as the Stokes numbers. For small particles, the
slip-rotation force is less important than the slip-shear
force; for large particles the slip-rotation force is more
important than the slip-shear force.
(2) The velocity profiles and fluctuations of particles at a typical
axial location are demonstrated. Their differences indicate
the different response characteristics of particles with differ-
ent Stokes numbers. An interesting ‘‘choke” phenomenon in
the mainstream for large particles are found and explained.

(3) Due to the anisotropic nature of the strongly swirling flow,
the shear stress tensor cannot be neglected, even for particle
motion. The anisotropic fluctuation of turbulence influences
the particle shear Reynolds stress in different ways. The dif-
ferences in the profiles of shear stress indicate the different
pattern of particle dispersion in the swirling flow. It is con-
cluded that both the particle motion and fluctuations and
the shear stress characteristics are greatly correlated to the
fluid turbulence.

(4) The particle turbulence intensity visualize the different pat-
terns of particle dispersion. A strong helical motion for small
particles and a weaker helical or even radial motion of larger
particles are demonstrated respectively. For explanation, the
mean moment of momentum of particles with respect to the
jet axis quantifies the degree of helical motion of them.
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